
End-User Composition of Interactive Applications

through Actionable UI Components

Giuseppe Desolda, Carmelo Ardito,

Maria Francesca Costabile

Dipartimento di Informatica

Università degli Studi di Bari Aldo Moro

Via Orabona, 4 – 70125 – Bari, Italy

{giuseppe.desolda, carmelo.ardito,

maria.costabile}@uniba.it

Maristella Matera

Dipartimento di Elettronica, Informazione e Bioingegneria

Politecnico di Milano

P.zza L. da Vinci, 32 – 201233 – Milano

maristella.matera@polimi.it

Abstract — Developing interactive systems to access and

manipulate data is a very tough task. In particular, the

development of user interfaces (UIs) is one of the most time-

consuming activities in the software lifecycle. This is even more

demanding when data have to be retrieved by accessing flexibly

different online resources. Indeed, software development is

moving more and more toward composite applications that

aggregate on the fly specific Web services and APIs. In this

article, we present a mashup model that enables the integration,

at the presentation layer, of specific UI components providing

visualizations and manipulation functions on top of data

retrieved by online data sources. This model has been exploited to

develop a mashup platform that allows non-technical end users to

create component-based interactive workspaces via the

aggregation and manipulation of data fetched from distributed

online resources. Due to the abundance of online data sources,

facilitating the creation of such interactive workspaces is a very

relevant need that emerges in different contexts. This article

shows how the developed mashup platform permits the rapid

prototyping of interactive applications enabling the access to

Web services and APIs.

Keywords - Human-Centric Service Composition; Mashup Model.

I. INTRODUCTION

The development of user interfaces (UIs) is one of the most
time-consuming activities in the creation of interactive systems.
The need for proper reuse mechanisms for building UIs has
become evident in the last years, especially as software
development is moving more and more toward component-
based applications [1]. A considerable number of resources are
also available online. Thus, easy and effective mechanisms to
create UIs on top of the offered data are required. In this article,
we propose a mashup model that enables the integration at the
presentation layer of “Actionable UI components”. These are
components equipped with both data visualization templates
and a proper logic consisting of functions to manipulate the
visualized data. The goal of the model is to reduce the effort
required for the development of interactive workspaces [2], by
maximizing the reuse of UI components.

In our approach, UI components not only constitute “pieces”
of UIs that can be assembled into a unified workspace. Each
single component can also provide views over the huge

quantity of data exposed by Web services and APIs available
online or from any data source, even personal or locally
provided. With respect to the original definition of UI
components [3, 4], we promote the notion of Actionable UI
components, which introduce varying functions to allow end
users to manipulate the contained data.

Our approach is located in the research context related to
facilitating the access to data sources through visual user
interfaces, a problem that has been attracting the attention of
several researchers in recent years [5, 6]. An ever-increasing
number of resources is available that provide content and
functions in different formats through programmatic interfaces.
The efforts of many research projects have thus focused on
letting laypeople, i.e., users without expertise in programming,
access and exploit the available content [7, 8]. In this respect,
the reuse of easily programmable UI components is a step
towards the provision of environments facilitating the End-
User Development (EUD) of service-based interactive
workspaces [2]. In general, EUD refers to the involvement of
end users in the software life cycle, in order to modify and even
create software artifacts [9, 10]. EUD activities range from
simple parameter setting to the integration of pre-packaged
components, up to extending the system by developing new
components. Reusing is typical of Web mashups [1], a class of
applications that emerged in the last decade, which can be
created by integrating components at any of the application
stack layers (presentation, business logics and data). The term
mashup was originally coined in music, where mashup
indicates a song created by blending two or more songs,
usually by overlaying the vocal track of one song seamlessly
over the instrumental track of another.

The real novelty introduced by Web mashups is the
possibility to synchronize components at the presentation layer
by considering elements of their UI, for example, by means of
event-driven composition techniques. Thanks to the possibility
of reusing and synchronizing ready-to-use UI components, the
mashup has resulted in an effective paradigm to let end users,
even non-experts in technology, compose their interactive Web
applications.

Over the last years, we have been working extensively on a
mashup platform called EFESTO that, by exploiting end-user

development principles, addresses the creation of component-
based interactive workspaces by non-technical end users, via
the aggregation and manipulation of data fetched from
distributed online resources [2, 11]. This platform also enables
the collaborative creation and use of distributed interactive
workspaces [12]. The platform prototype keeps improving
from various aspects, based on field studies performed with
real users who reveal new requirements and features that are
useful to foster the adoption of mashup platforms in people’s
daily activities. Based on these experiences, in which we
observed people creating their interactive applications easily, in
this article we aim to stress the importance of this type of
platforms as tools for the rapid creation of interactive
applications enabling the access to Web services and APIs. In
particular, the main contribution of this article is a model for a
UI component mashup that other designers and developers can
adopt to develop mashup platforms as tools to easily compose
interactive workspaces, whose logic is distributed across
different synchronized components.

The paper is organized as follows. Section II illustrates the
main functionality offered by the platform for the creation of
interactive workspaces. Section III highlights how the
supported modus operandi is made possible thanks to some
abstractions, and, in particular, to the notion of actionable UI
components, around which the whole platform design has been
conceived. In particular, we stress how the adoption of such
conceptual elements leads to the notion of a distributed User
Interface, as an interactive artefact that can be assembled
according to lightweight technologies and that leverages on the
logics of self-contained actionable UI components. Section IV
discusses the Domain-Specific Languages (DSLs) we
introduced to describe the main elements of a mashup platform,
that can guide the dynamic instantiation and execution of the
distributed UIs. Section V complements Section III by
providing some technical details on how the model elements
are implemented in the EFESTO platform architecture. On the
basis of the related literature, Section VI presents the
classification dimensions for mashup tools and discusses how
EFESTO is characterized w.r.t. such dimensions. Section VII
concludes the article and outlines future work.

II. THE EFESTO PLATFORM

This section describes the most important features of our
mashup platform, called EFESTO, by showing how it is used
to create a mashup. The platform name was inspired by Efesto,
a god of the Greek mythology, who made magnificent magic
arms for other Greek gods and heroes. Analogously, the
EFESTO platform aims to provide end users with powerful
tools to accomplish their tasks. In order to capture the reader’s
attention, such features are written in bold in this section and
formalized in the model reported in Section III.

A. Mashup of Data Sources

In order to describe how EFESTO works, a scenario is
reported in which Tyrion uses the platform to create a mashup
that satisfies his information needs. Tyrion is a non-technical

user, i.e., he does not know programming language and he is
not familiar with technical terms of computer science.

Tyrion is going to organize his summer holidays, but he
hasn’t decided yet whether to go to in the US. Regardless of the
destination, Tyrion would like to attend at least a concert
during his holidays. Thus, he uses EFESTO to create a new
application (mashup) that retrieves and integrates information
about music events, possibly coming from different sources,
and presents the results through a visual representation he
selects. Specifically, Tyrion starts looking for pertinent services
among those registered in the platform. A wizard procedure
guides him to make a selection from a popup window where
services are presented by category (e.g., videos, photos, music,
social). Tyrion clicks on the music category and, among the
music services shown, he selects SongKick, a service that
provides information on music events of a specific singer.
EFESTO provides different visual templates, called User
Interface Templates (UI Template), that the user can select in
order to display the results of the application he is creating.
Tyrion actually selects a map as UI Template, since he wants to
visualize the retrieved music events geo-localized in a map.

Among the different data attributes of the SongKick
dataset, Tyrion has to select those he is interested in, i.e., those
that will be considered by the application he is creating.
EFESTO enables Tyrion to make this selection by direct
manipulation of elements shown in the user interface of his
workspace. In fact, all SongKick data attributes are visualized
in a panel on the left (see Figure 1, circle 1). To make the
attributes more understandable, the system also shows some
example values. Tyrion wants his application to consider
latitude and longitude of the location where a music event will
be performed, so that this location will be visualized in the
resulting map. Thus, Tyrion drags & drops the latitude and
longitude SongKick attributes into the respective fields (called
Visual Renderers [4]) of the map UI template (Figure 1, circle
2). Tyrion wants also to visualize, when required, additional
details about a musical event. For this, among the available UI
templates for text layout (Figure 1, circle 3), he chooses a table
with three rows and one column, since he wants to visualize
three more attributes, namely Event_name, Artist and City. To
make this possible, he selects each of these three attributes
from the left panel (Figure 1, circle 1) and drops it in the visual
renderers of the UI template (highlighted in yellow in Figure 1,
circle 2).

 After performing this mapping phase, Tyrion saves the
mashup in the platform calling it “Upcoming events by artist
name”. From now on, this mashup is a UI Component in the
user workspace, which is immediately executed in the Web
browser and represented as a map, as shown in the central
panel in Figure 2. By typing “Maroon 5” in the search box
(thus making a query), the results set of forthcoming events of
this singer are visualized as pins on the map. The map is shown
with a proper zoom level so that all the retrieved events are
visualized. This zoom level can obviously be varied by the
user. By clicking on a pin representing a music event, details of
that event (i.e., the attributes Event_name, Artist and City) are
shown.

Figure 1. Mapping between some SongKick attributes and the fields of the map user template (circle 2).

Tyrion can later update the created mashup by integrating
data coming from other data sources through union and join
data mashup operations [11]. Since a non-technical user is not
familiar with union and join operation, EFESTO let the user
perform such operations, again, through wizard procedures and
drag&drop actions. For example, Tyrion wants to retrieve more
music events than those provided by SongKick. He then
integrates SongKick with Eventful (another service retrieving
music events). Technically, this is a union operation. Tyrion
acts directly on the SongKick UI component previously created
by clicking on the gearwheel icon in the toolbar (pointed by
circle 1 in Figure 2) and choosing the “Add results from new
source” menu item. A wizard procedure now guides Tyrion in
choosing the new service, Eventful in this example, and in
performing a new mapping between the Eventful attributes and
the UI template already used in the previous mashup. The
newly created mashup (UI Component) is shown in the same
fashion reported in Figure 2 but now, when queried with an
artist name, this UI Component visualizes results gathered both
from the SongKick and Eventful services.

Another data integration operation available in EFESTO is
the join of different sources; it is useful to satisfy user’s desire
of further integrating the mashup with new data available in
other services. For example, Tyrion would like to show artist
video. SongKick does not provide such video but Tyrion can
retrieve them from YouTube. Technically, this operation is a
join between the SongKick artist attribute and YouTube.
EFESTO supports Tyrion in a very simple way. Tyrion clicks
on the component gearwheel icon and choses the “Extend
results with new data” menu item. A new wizard procedure
guides him while choosing (a) the service attribute to be
extended (artist in this example), (b) the new data source
(YouTube) and (c) how to visualize the YouTube results. From
now on, when clicking on the artist name in the map info
window, another window visualizes the YouTube videos
related to the artist, as shown in the right panel of Figure 2.

Another operation available in EFESTO is the change of
visualization for a given UI component. Tyrion, in fact, during
the interaction with SongKick, decides to switch from the map
UI template to the list UI template (see the result in Figure 3,
circle 1). To perform this action, he clicks on the gearwheel
icon in the SongKick toolbar and chooses the “Change
visualization” menu item. A wizard procedure guides Tyrion to
(a) choose a UI template (list in this case), and (b) drag&drop
the SongKick attributes onto the UI template, as already
described with reference to Figure 1.

B. A polymorphic data source

Despite the wide availability of data sources and
composition operations, sometimes users can still encounter
difficulties while trying to accommodate different needs and
desires. Let us suppose, for example, that during the interaction
with EFESTO Tyrion wants to get details about the artists of
the music events, such as genre, starting year of activity and
artist photo. Among those services registered in the platform,
Tyrion does not find any that satisfy this new information need.
Thus, he should go to the Web for a usual (manual) search for
the specific information. However, it might happen that, even
on the Web, there are no APIs providing such information.

 In order to overcome this drawback, EFESTO provides a
new polymorphic data source that exploits the wide
availability of information structured in the Linked Open Data
(LOD) cloud. It is called polymorphic because, when it is
composed with another source S, it is capable of modifying its
set of attributes depending on the source S, in order to better
fulfil the users’ needs. In contrast, the standard data sources
(YouTube, Wikipedia, etc.) provide the same set of attributes
independently of the composing source S. Lack of space
prevents us to provide more details about the creation of the
polymorphic data source. The interested reader may refer to
[13]. DBpedia has been chosen as initial LOD cloud thanks to
the vast amount of information it provides.

3

1

2

Figure 2. UI Component originated from SongKick data source visualized as a map and joined with YouTube to show artist video.

Thus, Tyrion can join the SongKick artist attribute with the
DBpedia-based polymorphic data source. The platform now
shows a list of attributes related to the musical artist class
(available in the DBpedia ontology), and Tyrion enriches the
current UI Component with the attributes genre, starting year
of activity and artist photo. Henceforward, Tyrion can find a
list of upcoming events and also visualize artist’s information
when clicking on the artist’s name. What has been described
also shows why the DBpedia-based data source is called
“polymorphic”. In fact, differently from pre-registered data
sources (e.g., YouTube) that provide a pre-defined, invariable
set of attributes, the system provides users different attributes
of the data of the DBpedia-based data source; such attributes
are automatically selected depending on the attribute in the
origin data source it is bound to. For example, if the Tyrion’s
join starting point is the attribute city, attributes like borough,
census, year, demographics would be provided by the
DBpedia-based data source.

C. Actionable UI Component

 Our field studies [2, 12] revealed that mashups generally
lack data manipulation functions that end users would like to
exploit in order to “act” on the extracted contents, e.g.
functions that allow to perform tasks such as collecting&saving
favourites, comparing items, plotting data items on a map,
inspecting full content details, organizing items in a mind map
in order to highlight relationships. In this section, we remark
another very innovative feature of EFESTO: it offers tools that
enable specific tasks, allowing users to manipulate the
information in a novel fashion, i.e., without being constrained

to pre-defined operation flows typical of pre-packaged
applications.

In order to perform more specific and complex sense-
making tasks, a set of Tools is available in the left-panel of the
workspace (see Figure 3, circle 4). These Tools are added to
the workspace by clicking the corresponding icon. Let us
describe an example of their usage with reference to our
scenario. Tyrion is looking for hotels in New York located
nearby the places where upcoming musical events will be held.
According to his strategy, he is more interested in finding a
good hotel and then look for possible musical events to attend.
First, he adds the Hotel data source into his workspace (see
Figure 3, circle 5) and then performs a search by typing “New
York” in the Hotel search bar. After including the Comparing
tool in the workspace, Tyrion drags&drops inside it the first
five hotels from the Hotel UI component. The Comparing tool
supports Tyrion in the identification of the most convenient
hotels, which are now represented as cards providing further
details, such as average price, services and category (see Figure
3, circle 2). Afterwards, he drags&drops three hotels from the
Comparing tool inside the Locating tool (Figure 3, circle 3) in
order to visualize them as pins on the map. Finally, Tyrion
performs a search on the SongKick data source by using “New
York” as keyword and then moves all the results, i.e. the
upcoming musical events, inside the Locating container. The
map now shows pins indicating both the hotels (red ones) and
the upcoming musical events in New York (green ones).
Tyrion can now easily identify which musical events are close
to the hotels he has previously chosen. However, it could
happen that Tyrion adopts a different strategy. He wants to first
identify upcoming musical events and then the hotels nearby.

1

He starts by retrieving musical events with SongKick (see
Figure 3, circle 1) and then moves some events inside the
Comparing tool in order to choose the best ones based on
musical genre and artists. Afterwards, he drags&drops some of
the compared events inside the Locating tool and finally adds
into this tool the hotels returned by the Hotel data source.

As shown in the previous example, the tools provided in
EFESTO allow users to interact with information within
dedicated actionable component, which enable specific tasks.
Thus, we call them Actionable UI Components. To create such
flexible environments, a model has been presented in [14] that
permits easy transition of information between different
contexts; this model implements some of the Transformative
User eXperience (TUX) principles described in [15, 16].

Figure 3. Use of some tools available in EFESTO to manipulate mashup data.

III. MODEL FOR UI COMPONENT MASHUP

The main contribution of this article is a model highlighting
the most important components that make a mashup tool an
environment where UIs can be built by reusing and
synchronizing the logic of different pieces of UI. The goal is to
provide designers and software engineers with a model that
guides them during the development of mashup platforms for
non-programmers. The proposed model refines and extends the
one presented in [4], where the authors defined the modelling
abstractions on which their composition paradigm is based. Our
model has been iteratively refined by adding further
components starting from requirements we gathered during our
research, namely: i) a different way to integrate service data by
means of more powerful join and union operations for data
mashup; ii) the Actionable UI Components that implement
some Transformative User eXperience principles [15, 16]; iii)
the polymorphic data sources based on Linked Open Data. The
new model is depicted in Figure 5. In the following, we report
the definitions of the most salient concepts that contribute to
the notion of distributed UIs.

Definition 1. UI Component. It is the core of the model
since it represents the main modularization object the user can
exploit to retrieve and compose data extracted from services.
According to [3], a UI component is a JavaScript/HTML stand-
alone applications that can be instantiated and run inside any

Web browser and that, unlike Web services or data sources, are
equipped with a UI that enables the interaction with the
underlying service via standard HTML. In our approach, a UI
component also allows the interaction with services data and
functions thanks to its own UI (see Figure 4). More
specifically, it supplies a view according to specific UI
Templates (see Definition 2) over one or more services whose
data can be composed by means of data mashup operations
and. In addition, two or more UI components can also be
synchronized according to an event-driven paradigm: each of
them can implement a set E of events that the user can trigger
during the interaction with its user interface, and a set A of
actions activated when events are performed on others UI
components.

Figure 4: Example of UI Component that shows musical events on Google

Maps.

Definition 2. UI Template. It plays two fundamental roles
inside the UI component: first, it guides the users in
materializing abstract data sources by means of a mapping
between the data source output attributes and the UI template
visual renderers; second, at runtime, it displays the data source
according to the user mapping. A UI Template can be
represented as the triple

uit =< type, VR>

where type is the template (e.g., list, map, chart) selected by the
user while VR is a set of visual renderers, i.e., UI elements that
act as receptors of data attributes.

Definition 3. Actionable UI Component (auic). In addition
to visualizing Web service data, auic also supply task-related
functions for manipulation and transformation of data items
retrieved from a source along user-defined task flows [14].

An auic can be defined as a pair:

auic = <TF, uit>

where TF is the set of functions for manipulation and
transformation of data, while uit is a UI templates used to
visualize data according to user’s task.

1

2

3

4
5

Figure 5: The mashup model.

Definition 4. Event-driven Coupling. It is a synchronization
mechanism among two UI components that the users define
according to an event-driven, publish-subscribe integration
logic [3]. In particular, the users define that, when an event is
triggered on a UI component, an action will be performed by
another UI component. This enables reusing the logic of single
UI components, still being able to introduce some new
behaviour for the composite UIs. More in general, given two
UI Components uici and uicj, a coupling is a pair:

c=< uici (<output>), uicj (<input>)>

Definition 5. Presentation Template. It is an abstract
representation of the workspace defining the visual
organization of the UICs included in the interactive workspace
under construction. For example, the UI components can be
freely located or can be constrained to a grid schema, where in
each cell only one UI Component can be placed.

Definition 6. UI Mashup. A UI Mashup is the final
interactive application built by the end users by means of the
integration of different UI components within a workspace. It
can be formalized as the tuple:

UI_Mashup =< UIC, C, PT, AUIC>,

where UIC is the set of UI Components integrated into the
workspace, C is the set of couplings the users established
among UIC, PT is the workspace template chosen to arrange
the UIC and AUIC is the set of Actionable UI Components to
manipulate data extracted from UIC.

The following definitions are reported to clarify how
actionable UI components are instantiated by means of data
extracted from data sources.

Definition 7. Data Component. It is an abstract
representation of the resource that can be used to retrieve data.
In particular, dc is a triplet:

dc=<t, I, Out>

where t indicates the type of resource, for example REST Data
Source or Polymorphic Data Source in our model, I indicates
the set of input parameters to query the resources, Out indicates
the set of output attributes. Data can be retrieved from data
sources and aggregated through the following operations:

Definition 8.a Selection. Given a data component dc, a
selection is a unary operator defined as:

σC (dc) = {r ∈ dc | result r satisfies condition C}.

where r is a result obtained by querying the data component dc
and C is a condition used to query dc.

Definition 8.b Join. Given a couple of data components dci
=< epi, qi , A> and dcj =< epj, qj , B>, a Join is a binary operator
defined as:

dci |><|ai dcj = {(a1, …, an, σC (dcj)) | C: qj = ai }

Definition 8.c Union. Given a couple of data components
dci =< epi, qi , A> and dcj =< epj, qj , B>, a Union is a binary
operator defined as:

dci U dcj = { x | x ∈ dci or x ∈ dcj }

The result of applying one or more operations is a data
mashup, i.e., the composite result set whose rendering and
manipulation is possible by means of UI components and
Actionable UI Components.

Definition 9. Data Mashup. It is the results of the
integration of data extracted by different data components. It is
a pair:

dm =< DC, O >

where DC represents the set of data components involved in
the composition; O is the set of operations (e.g., join and union)
performed between data components in DC.

Data mashup represents an important advance w.r.t. the
original model presented in [4] where data mashup was

conceived just as a visual aggregation of different data sources
by means of union and merge sub-templates. In that case, the
result of the data mashup could not be reused with other UI
templates. In our model, the data mashup is a new integrated
result set published as a new data source. This new data source
can be used in the platform as a new source that can be
visualized by using UI templates.

IV. PLATFORM DESCRIPTORS

In order to make the previous abstractions concrete in the
implemented platforms, we defined some Domain-Specific
Languages (DSLs) inspired to EMML [17]. New languages
were adopted instead of EMML because the composition logic
implemented in the EFESTO refers only to a small sub-set of
the composition operators available in EMML. Each of these
new languages allow us to define internal specifications of the
main elements (e.g., UI components, service, UI template) that
can guide the dynamic instantiation and execution of the
distributed UIs.

Figure 6: An example of UI component descriptor codified with our XML

language.

In Figure 6 it is reported an example of our XML language
specifying a UI component that renders a data mashup
consisting in a union between two services (YouTube and
Vimeo) and a join of the unified services with a third service
(Wikipedia). In the XML file, the tag unions has two children,
services and shared. The services tag summarizes the unified
services. Each service is reported in a service tag. In particular,
the service tag has the attribute name that indicates the name of

the data source. This value is used by the mashup tool to
retrieve the source details to perform the query. The shared tag
describes the alignment of the attributes of the unified data
sources. For example, it has two children called
shared_attribute, each of them with two children attribute that
represent the service attributes that are mapped in a UI
template.

Each service reported in the service tag is detailed in a
separate service descriptor XML file. In Figure 7, the YouTube
service descriptor is reported: inside the root tag called service,
there are the tags source, inputs, params, attributes and flags.
The first three nodes represent all the information useful to
query a data source. The fourth node, attributes, describes the
instance attributes. The last node, flag, is introduced to solve
the heterogeneity problem of the data sources. In fact, the
remote web services typically send the results by using JSON
file but the list of results if formatted in different ways (e.g.
inside a JSON array).

Figure 7: An example of service descriptor codified with our XML language.

Another XML descriptor introduced in our model regards
the UI Template. In Figure 8, the list UI Template has been
reported. It is characterized by a set of sub-UI templates
(different types of lists). In particular, the root node, template,
has an attribute name that indicates the template name. The
root has a set of children that describe different alternatives to
visualize the UI template.

Figure 8: An example of list UI template descriptor codified with our XML

language.

The UI template descriptor is linked with the VI schema
through the XML mapping descriptor. An example of mapping
is reported in Figure 9. In this descriptor, the root node,
mappings, has two attributes: templatetype and templatename.
The first one recalls the name of a UI Template (e.g. list), the
second one the name of its sub-template (list_A).

Figure 9: An example of mapping descriptor

V. FROM THE MODEL TO THE PLATFORM ARCHITECTURE

The model presented in Section III guides designers and
software engineers in developing mashup platforms targeting
non-programmers. The model highlights the main concepts of a
mashup platform without emphasizing technical aspects. In this
section, we report a high-level overview of the architecture of
the EFESTO mashup platform, in order to illustrate how it
implements the mashup model.

The architecture is characterized by tree-layers (Figure 10).
On top, the UI layer provides and manages the visual language
that allows end users to perform mashups without requiring
technical skills. Such language is based on UI Components that
use UI Templates and Actionable UI Components to allow
users to visualize and manipulate data extracted from remote
sources. The UI layer runs in the user’s Web browser and
communicates with the Logic and Data layer that run on a
remote Web server.

Figure 10. An high-level overview of the EFESTO three-layer architecture

The Logic Layer implements components that translate the
actions performed by end users at the Interaction Layer into the
mashup executing logic. In particular, the Mashup Engine is

invoked each time an event, requiring the retrieval of new data
or the invocation of service operations, is generated. The Event
Manager, instead, manages the UI Components coupling. In
particular, when users define a synchronization between two UI
Components A and B, it instantiates a listener that waits for an
event on A that, when triggered, causes the execution of an
action on B, according to the coupling defined by the user.

The Data Layer stores the XML-based descriptors
described in Section IV into proper repositories. In addition, at
this layer there are the remote data sources that reside on
different Web servers.

VI. CLASSIFYING DIMENSIONS AND EFESTO

CHARACTERIZATION

A book that is a comprehensive reference for mashups,
authored by Daniel and Matera, was published in 2014 [1]. The
authors systematically cover the main concepts and techniques
underlying mashup design and development, the synergies
among the models involved at different levels of abstraction,
and the way models materialize into composition paradigms
and architectures of corresponding development tools. Some
other publications also report several mashups and mashup tool
features. For example, a recent review of tools, languages and
methodologies for mashup development is presented in [18]. In
this paper, the authors identify a set mashup and mashup tool
features, taking into account other surveys and literature
reviews. In [19] the design space of mashup tools has been
proposed. The authors survey more than 60 articles on mashup
tools, pointing out that only 22 tools are online. Based on these
22 tools, they propose a model focused on the main
perspectives occurring in the design of mashup tools. On the
basis of this model and taking into account what is reported in
[1, 18], in the rest of this section we provide a further
characterization of EFESTO in relation to the dimensions that
most characterize mashup tools. The considered dimensions are
reported in Table 1, indicating with * the ones derived from the
design issues in [19].

Table 1. Mashup tool dimensions. The * indicates the dimensions derived

from [19].

 Dimensions Categories

T
o

o
l

Targeted

end users *

Non-Programmers - Local Developers - Expert

Programmers

Automation

degree *
Full Automatic - Semi-Automatic – Manual

Liveness

Level *
1 – 2 – 3 – 4

Interaction

Paradigm*

Editable Example – Form based –

Programming by example – Spreadsheets –

Visual DSL – Visual Language (Iconic) – Visual

language (Wiring, Implicit control flow) -

Visual language (Wiring, Explicit control flow)

– WYSIWYG – Natural Language

License Open Source – Commercial

Runtime

environment
Desktop – Mobile – Cloud

Supported

Resources

RESTful – SOAP – smart things – file –

database – CSV – excel – smart things

Targeted end users. In terms of programming skills, the end
users range from non-programmers to experienced
programmers, with in the middle professional end-users
without programming skills, but who are interested in
computers and technology, also called local developers [20].
Typically, the tools for experienced programmers are very
powerful but less easily usable. On the contrary, the tools for
non-programmers have simplified mechanisms that sacrifice
the expressive power of the tools.

Non-programmers are users without any skill in
programming and represent the majority of web users. The
tools they are interested in are the ones that don’t require
learning/use of programming languages and technical
mechanisms common for ICT experts and engineers (e.g., the
use of logical operators and complex process flows). Thus,
non-programmers should be provided with tools that limit their
involvement in the development process to small
customizations of predefined mashup templates, or the
execution of parameterized mashups. A mashup tool for non-
programmers has been described in [21]: it supports the
development of adaptive user interfaces that react to contextual
events related to users, devices, environments and social
relationships. In particular, non-programmers can define the
context-dependent behavior by means of trigger / action rules.

Local developers are users with knowledge in ICT
technology and software usage without having skills in
computer programming. Typically, those target users are
willing to explore software and thus tools can provide
composition functionality where mashups can be assembled
from scratch by composing predefined components or by
customizing and changing existing examples and templates. To
do this, mashup tools for local developers have to provide a
high level of abstraction that ideally hides all the underlying
technical complexity of the mashup development. An example
is the platform presented in [22], where the author proposes a
new perspective on the problem of data integration on the web,
the so-called surface web. The idea is to consider web page UI
elements as interactive artefacts that enable the access to a set
of operations that can be performed on the artefacts. For
example, a user can integrate into his personal web page a list
of videos gathered from YouTube and he can also append a list
of Vimeo videos. This data integration can be improved by
means of filtering and ordering mechanisms. These operations
can be achieved, for example, by pointing and clicking
elements (YouTube and Vimeo video lists), dragging and drop-
ping them into a target page (e.g. personal Web page) and
choosing options (filtering and ordering).

Programmers are users with an adequate knowledge of
programming languages. They are the only users who can
compose complex, rich in features, and powerful mashups, by
means of tools that also provide Web scripting languages for
developing more complex, customized mashups. EFESTO and
the model it implements is strongly oriented to non-
programmers and local developers. In fact, the mashup
platforms we are interested in designing are devoted to non-
technical users, providing them with a composition paradigm
that fits their mental model.

Automation degree. This dimension refers to how much the
mashup creation can be supported by the tool on behalf of its
users. For this reason, the author of [19] identified two
categories: semi-automation and full-automation. A new
category, manual, has been introduced to indicate tools without
support in mashup creation.

Tools that support a semi-automated creation of mashup
partially support users, providing low levels of guidance and
assistance. A semi-automated tool requires users to have more
skills, but guarantees a high degree of freedom in creating a
mashup that satisfies their needs.

A full automation in mashup development reduces the
direct involvement of users in the development process, since
users are strongly guided and assisted in the process, and play a
supervisory role of just providing input or validating mashup
results. These tools require a short learning curve and decrease
the effort in mashup development. However, these facilities
limit the possibility of creating a mashup that fits all the user
needs. An example of a full-automated tool is NaturalMash, a
tool that allows users to express in natural language what
services they want in their mashup and how to orchestrate them
[7]. To ensure the accuracy of the expressed user requests,
NaturalMash limits the user with a controlled natural language
(a subset of a natural language with limited vocabulary and
grammar).

The manual category refers to those tools that do not
provide any support to the users during the mashup creation.
For example, Yahoo! created a console to formulate queries in
a YQL language to perform data-mashup. In this tool, no help
or assistance is given to the users because they have to
formulate their queries following the YQL syntax. If the query
is expressed correctly the the JSON or XML result is produced,
otherwise a syntax error is shown.

With respect to this dimension, EFESTO supports a full
automation degree. In fact, the tool composition paradigm is
grounded on wizard procedures that guide the end users in
creating a widget on top of a web service or in composing
different web services by means of operations like join or
union.

Liveness Level. The concept of liveness for visual languages
presented in [23] was also adopted in the mashup domain [19].
In particular, the authors of [19] used the four liveness levels to
express the tool complexity.

Level 1 expresses the Flowchart as ancillary description: in
this case tools are used to compose a mashup as a non-runnable
prototype that is not directly connected to any kind of runtime
system. This prototype has just a user interface, but does not
implement any functionality. If on one hand these tools don’t
require technical or programming skills, one the other hand an
execution environment is necessary to execute the prototype.
Microsoft Visio enables the creation of prototype mashups. The
resulting prototypes can be completed with data and executed
by Microsoft Excel [24].

Level 2 expresses the executable flowchart: tools in this
category produce a mashup design blueprint with sufficient
details to give it an executable semantics. The consistency
(logical, semantical or syntactical) of the produced mashups

can be verified. However, the development of mashups through
these tools requires skills in programming, since users need to
define low-level technical details and thus their use is limited
only to programmers. For example, Activiti is a lightweight
workflow and Business Process Management (BPM) Platform
characterized by features such as modeler, validation and
remote user collaboration.

Level 3 expresses the edit triggered updates: in this case
mashup tools are characterized by the development of mashups
that can be easily deployed into operation. Users produce their
mashups without devoting too much effort in the manual
deployment typically by using two environments: one for the
mashup editing and another for mashup execution. The
deployment of the mashup under development in the editing
environment could be obtained, for example, by clicking a run
button that produces a deployment in the execution
environment. An example of a mashup tool with these features
is JackBe Presto, characterized by a design environment to
model the mashup and a runtime environment used for
debugging and monitoring purposes.

Level 4 expresses the Stream-driven updates: it is assigned
to those tools that support live modification of the mashup
code, while it is being executed, without differences between
editing and execution. In this way, the mashup development is
very fast and does not require particular programming skills.
This approach is implemented in DashMash, a mashup tool
that allows Web service creation and synchronization by means
of an event-driven paradigm [25], without distinction between
editing and execution time. With respect to this dimension,
EFESTO supports live modification of mashup, since it blends
into a single environment both the editing and the execution
phases (level 4 - Stream-driven updates). In fact, the end users
edit and run their mashups in the same environment, this tool
exactly, without switching between two or more different
environments. This mechanism is in line with our goal of
proposing a mashup tool for non-technical end users.

Interaction Paradigm. One of the most important aspects that
affects mashup tool adoption is the interaction paradigm to
compose Web services. Actually, this dimension is called
Interaction Technique in [19]. This is one of the most critical
aspects that has limited the wide adoption of mashup tools in
recent years, since the interaction paradigm proposed by
several tools was not suitable for non-technical people. In the
following, the most adopted interaction paradigms are reported.

The Domain Specific Language class includes technical
interaction techniques since it refers to script languages
targeted to solve specific problems for specific domains. In
fact, these languages are characterized by textual syntax,
sometimes similar to existing programming languages. Since
these languages are very similar to programming languages,
they require users to have strong knowledge and skills. An
example is Swashup, a Web-based development environment
for a textual Domain-Specific Language (DSL) based on the
Ruby on Rails framework (RoR) [26].

A simpler but less powerful alternative is the class of visual
programming languages, i.e. programming languages that use
visual symbols, syntax, and semantics. In [19] the authors
identify two sub-dimensions of visual programming languages:

visual wiring languages and iconic visual languages. In the
case of wiring languages, mashup tools visualize each mashup
component or each mashup operation (e.g. filtering, sorting,
merging) as a box that can be wired to other boxes. The
mashup tools adopt, in most cases, the visual wiring
mechanism, since this is the most explicit, thanks to the one-to-
one relationship between the control flow and the data from
one activity to another and the visual boxes wired to each other.
Tools that implement iconic visual languages translate objects
of mashup language into visual icons. In this way, if the icons
are properly designed, users are facilitated in understanding
how to compose a mashup.

The class of WYSIWYG (What You See Is What You Get)
interaction mechanisms permits the creation and modification
of a mashup on a graphical interface, without any need to
switch from an editor environment to an execution
environment (similar to the Liveness Level 4). These tools are
very useful and suitable for non-programmers, since users have
the mashup creation under control. However, these
mechanisms sometimes represent a limitation, since users
cannot access advanced features like filtering and conversion,
that are typically hidden in the tool backend and thus one not
available to the users.

An alternative is the class of Programming by
Demonstration interaction techniques that allow the
programming of a computer by giving an example of a
particular task. Typically, these interactions are very useful to
reduce or remove the need to learn programming languages and
therefore they are also adopted in the context of mashup tools.
With these techniques, users can ‘show’ to the mashup tools
how a mashup should be. The tools are then in charge of
converting the given example into a runnable program, i.e. a
mashup.

Another class of techniques, similar to the previous one, is
Programming by Example Modification, that consists in
allowing users to modify a mashup instead of starting from
scratch. If the tool provides an adequate set of examples, in
most cases the customization of one of the available mashups
requires a little effort by users.

An alternative class of interaction technique is
Spreadsheets, one of the most popular end-user programming
approaches to store, manipulate and display data. Tools that
implement spreadsheets are oriented towards data mashups, but
typically produce data visualization, thus they cannot build a
mashup with their own user interface.

The last example is form-based interaction. Tools that adopt
this interaction ask users to fill out forms to create an object or
to edit an already existing one. Since the form filling is a
common practice today on the Web for all kinds of users,
mashup tools that implement this technique are easy to use by a
wide range of users. However, these tools cannot produce
complex mashups.

With respect to this dimension, EFESTO implements a
WYSIWYG interaction mechanism to make the mashup
modification more simple. In fact, during the wizard
procedures that assist the users in editing their mashups, all the

Web service details are always visible and under the control of
the end users in a WYSIWYG fashion.

License. Several mashup tools are conceived as research
projects published in a public repository and/or available as
runnable tools on a site. However, also commercial products
appeared over time, thus, from the license perspective, two
types of tools can be identified: open source and commercial.

In the case of open source tools, the community of users is
composed of project contributors, i.e. programmers that
participate in the tool development, and by end users, i.e.
people that just use the tool. As is common in many open
source projects, support and quality of mashup tools are
sometimes quite low, since they are born as research projects
and there are not adequate funds and interest in maintaining
and updating the projects over time.

In the case of commercial tools, the development and
update of the tools are performed by ICT companies that
provide these tools for free or for payment. For example, in the
case of Netvibes [27], the tool can be used for free to aggregate
general Web services or for payment by agencies and
enterprises providing them with advanced features like the
possibilities to sell social dashboards to clients (agencies) or
use personal data inside the dashboard (enterprises). With
respect to this dimension, EFESTO is the result of academic
research and thus released as open source software.

Runtime environment. Similar to the device location
dimension presented in the previous section, different devices
can be used to create a mashup with a tool. The desktop PCs
are the most common environments on which mashup tools
run, since they are equipped with wide screens that offer
enough space to visualize mashup components.

However, in some cases, also mobile devices are used to
create mashups. For example, the Atooma app transforms a
smartphone into a ‘personal assistant’, since the users can
automate all the manual operations they usually perform with
their phone, e.g. combine Wi-Fi, Mobile Data, Facebook,
Twitter, Instagram, Gmail and other services. In particular,
with the Atooma app the users can simply create automations
exploiting an event-action paradigm, that allows the definition
of rules following the syntax “IF something happens DO
something else”.

With respect to this dimension, EFESTO runs on different
environments that include tablets, desktop PCs and large
interactive displays. The tool ‘fits’ the device on which it runs,
optimizing the UI and functions, depending on the hardware
peculiarities and constraints (e.g. display size, interaction
methods, etc.).

Supported resources. This dimension is related to the type of
resource dimension identified in the mashup dimensions. In
fact, in order to create a mashup with different services,
mashup tools have to support different types of services, such
as the ones previously identified (e.g. RESTful and SOAP).
The more types of resources the tool is able to support more
flexible and powerful the tool is.

With respect to this dimension, the mashup tool described
in this article implements a mashup engine that permits the

mashup of different data sources such as RESTful web
services, CSV files and databases. The modularity of this
engine allows the easy integration if the tool with other types of
data sources.

VII. CONCLUSION

This article discusses some abstractions that can promote
mashup platforms as tools that permit the easy creation (i.e.,
even by non-technical end users) of interactive workspaces,
whose logic is distributed across different components, that are,
however, synchronized with each other. One of the main
contributions of mashup development is the introduction of
novel practices, enabling integration of available service and
data at the presentation layer, in a component-based fashion -
an aspect that has been investigated before. Some papers,
indeed, discuss and motivate the so-called UI-based integration
[4, 28, 29] as a new component-based integration paradigm,
that privileges the creation of fully-fledged artifacts, also
equipped with UIs, in addition to the traditional service and
data integration practices that, instead, mainly act at the logic
and data layers of the application stack. In this direction, this
article highlights how interactive artifacts can be composed by
reusing the presentation logics (i.e., the UIs) and the execution
logics of self-contained modules, the so-called Actionable UI
Components, providing for the visualization of data extracted
from data sources and for data manipulation operations through
task-related functions. A model is also provided to describe the
most salient elements that enables the integration at the
presentation layer of Actionable UI components.

By capitalizing on the experience gained in recent years by
the authors in the development of prototypes of mashup
platforms, this article aims to propose a systematic view on
concepts and techniques underlying mashup design and on the
way such concepts materialize into the composition paradigms
and architectures of corresponding development tools,
independently of specific approaches and technologies and,
thus, of more general validity. Our current work is devoted to
enriching the EFESTO platform by means of tools for
actionable components and to customizing the platform to
other application domains, so that further validation studies
will be performed.

REFERENCES

[1] Daniel, F. and Matera, M. (2014). Mashups: Concepts, Models and
Architectures. Springer.

[2] Ardito, C., Costabile, M. F., Desolda, G., Lanzilotti, R., Matera, M.,
Piccinno, A. and Picozzi, M. (2014). User-Driven Visual Composition of
Service-Based Interactive Spaces. Journal of Visual Languages &
Computing, 25, 4, 278-296.

[3] Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F. and Matera,
M. (2007). A framework for rapid integration of presentation
components. In Proc. of International Conference on World Wide Web
(WWW '07). ACM, 923-932.

[4] Cappiello, C., Matera, M. and Picozzi, M. (2015). A UI-Centric
Approach for the End-User Development of Multidevice Mashups. ACM
Transaction Web, 9, 3, 1-40.

[5] Spillner, J., Feldmann, M., Braun, I., Springer, T. and Schill, A. (2008).
Ad-Hoc Usage of Web Services with Dynvoker. In Towards a Service-
Based Internet - ServiceWave 2008. Lecture Notes in Computer Science
5377. Springer Berlin Heidelberg, 208-219.

[6] Krummenacher, R., Norton, B., Simperl, E. and Pedrinaci, C. (2009).
SOA4All: Enabling Web-scale Service Economies. In Proc. of
International Conference on Semantic Computing (ICSC '09). IEEE
Computer Society, 535-542.

[7] Aghaee, S. and Pautasso, C. (2014). End-User Development of Mashups
with NaturalMash. Journal of Visual Languages & Computing, 25, 4,
414-432.

[8] Hirmer, P. and Mitschang, B. (2016). FlexMash–Flexible Data Mashups
Based on Pattern-Based Model Transformation. In Rapid Mashup
Development Tools - Rapid Mashup Challenge in ICWE 2015. 591.
Springer Verlag, 12-30.

[9] Lieberman, H., Paternò, F. and Wulf, V. (2006). End User Development,
Springer.

[10] Fischer, G. (2009). End-User Development and Meta-design:
Foundations for Cultures of Participation. In International Symposium
on End-User Development - Is-EUD 2009. Lecture Notes in Computer
Science 5435. Springer Berlin Heidelberg, 3-14.

[11] Desolda, G., Ardito, C. and Matera, M. (2015). EFESTO: A platform for
the End-User Development of Interactive Workspaces for Data
Exploration. In Rapid Mashup Development Tools - Rapid Mashup
Challenge in ICWE 2015. Communications in Computer and
Information Science 591. Springer Verlag, 63 - 81.

[12] Ardito, C., Bottoni, P., Costabile, M. F., Desolda, G., Matera, M. and
Picozzi, M. (2014). Creation and Use of Service-based Distributed
Interactive Workspaces. Journal of Visual Languages & Computing 25,
6, 717-726.

[13] Desolda, G. (2015). Enhancing Workspace Composition by Exploiting
Linked Open Data as a Polymorphic Data Source. In Intelligent
Interactive Multimedia Systems and Services (KES-IIMSS '15). Smart
Innovation, Systems and Technologies 40. Springer International
Publishing, 97-108.

[14] Ardito, C., Costabile, M. F., Desolda, G., Latzina, M. and Matera, M.
(2015). Making Mashups Actionable Through Elastic Design Principles.
In End-User Development - Is-EUD 2015. Lecture Notes in Computer
Science 9083. Springer Verlag, 236-241.

[15] Latzina, M. and Beringer, J. (2012). Transformative user experience:
beyond packaged design. interactions, 19, 2, 30-33.

[16] Beringer, J. and Latzina, M. (2015). Elastic workplace design. In
Designing Socially Embedded Technologies in the Real-World.
Computer Supported Cooperative Work Part I. Springer, 19-33.

[17] Viswanathan, A. (2010). Mashups and the enterprise mashup markup
language (EMML). Dr. Dobbs Journal.

[18] Paredes‐Valverde, M. A., Alor‐Hernández, G., Rodríguez‐González, A.,
Valencia‐García, R. and Jiménez‐Domingo, E. (2015). A systematic
review of tools, languages, and methodologies for mashup development.
Software: Practice and Experience, 45, 3, 365-397.

[19] Aghaee, S., Nowak, M. and Pautasso, C. (2012). Reusable decision
space for mashup tool design. In Proc. of ACM SIGCHI symposium on
Engineering Interactive Computing Systems (EICS '12). ACM, 211-220.

[20] Nardi, B. A. (1993). A small matter of programming: perspectives on
end user computing. MIT Press.

[21] Ghiani, G., Paternò, F., Spano, L. D. and Pintori, G. (2016). An
environment for End-User Development of Web mashups. International
Journal of Human-Computer Studies, 87, 38-64.

[22] Daniel, F. (2015). Live, Personal Data Integration Through UI-Oriented
Computing. In Engineering the Web in the Big Data Era. Lecture Notes
in Computer Science 9114. Springer International Publishing, 479-497.

[23] Tanimoto, S. L. (1990). VIVA: A visual language for image processing.
Journal of Visual Languages & Computing, 1, 2, 127-139.

[24] Wright, S., Bakmand-Mikalski, D., bin Rais, R., Bishop, D., Eddinger,
M., Farnhill, B., Hild, E., Krause, J., Loriot, C. and Malik, S. (2011).
Designing Mashups with Excel and Visio. In Expert SharePoint 2010
Practices. Springer, 513-539.

[25] Cappiello, C., Matera, M., Picozzi, M., Sprega, G., Barbagallo, D. and
Francalanci, C. (2011). DashMash: A Mashup Environment for End
User Development. In Web Engineering - ICWE 2011. Lecture Notes in
Computer Science 6757. Springer Berlin Heidelberg, 152-166.

[26] Maximilien, E. M., Wilkinson, H., Desai, N. and Tai, S. (2007). A
domain-specific language for web apis and services mashups. Springer.

[27] Netvibes. Retrieved from https://www.netvibes.com/. Nov 26th, 2015

[28] Daniel, F., Matera, M., Yu, J., Benatallah, B., Saint-Paul, R. and Casati,
F. (2007). Understanding ui integration: A survey of problems,
technologies, and opportunities. Internet Computing, IEEE, 11, 3, 59-66.

[29] Yu, J., Benatallah, B., Casati, F. and Daniel, F. (2008). Understanding
Mashup Development. IEEE Internet Computing, 12, 5, 44-52.

